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In  this paper we apply a formalism introduced in a previous paper to write down 
a self-consistent set of equations for the functions that describe the near-equilibrium 
time behaviour of random oceanic internal waves. These equations are based on the 
direct-interaction approximation. The self-consistent equations are solved numeric- 
ally (using the Garrett-Munk spectrum as input) and the results are compared to 
parameters obtained in the weak-interaction approximation (WIA). The formalism 
points out that an extra parameter that is implicitly vanishingly small in the WIA 
has a significant effect on decay rates when computed self-consistently. We end by 
mentioning possible future self-consistent calculations that would improve upon our 
own. 

1. Introduction 
In  the past few years the study of transfer of energy in the internal-wave field of 

the ocean has become an active area of research. Olbers (1976), McComas (1977), 
Pomphrey, Meiss & Watson (1980), and DeWitt & Wright (1982), have done 
calculations in the resonant-interaction approximation (RIA, also called weak- 
interaction approximation, WIA) of lifehimes and action transfer rates. 

There has been a continuing controversy during the last few years regarding the 
validity of the RIA. I n  addition to the above references see also McComas & Muller 
(1981), Fredericksen & Bell (1983), Carnevale & Fredericksen (19834 and Holloway 
(1980, 1982) for a further discussion of this point. The previous calculations implicitly 
assumed that the interactions were weak and that the lifetimes of modes were long 
compared to other relevant timescales. In  our approach, the nature of this 
approximation will be made clearer. Intuitively, it is easy to understand one source 
of the short lifetime. Consider the interaction of an infinitesimal small-scale wave (test 
wave) with large-scale inertial waves. The interaction consists of advection by the 
large-scale waves and a rapid change in the wavenumber of the test wave, both in 
magnitude and direction (see Holloway 1979 and references therein). Attempts a t  
solving this part of the problem have been made by Meiss & Watson (1982), Henyey 
& Pomphrey (1983) and Henyey, Pomphrey & Meiss (1983). In  this paper we present 
a calculation using the formalism presented in DeWitt & Wright (1982) and DeWitt' 
(1982). The idea is to use the direct-interaction approximation (DIA). In  fact we will 
use additional approximations to the DIA. The details and further references can 
be found in DeWit't &. Wright (1982) or DeWitt' (1982). 

!&2 
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The DIA equations give an effective linear theory with memory terms and forcing 
terms. The memory function and forcing function are determined by a self-consistent 
calculation that will be described in $2. I n  this section we write down the effective 
linear theory, as that  will enable the reader to better understand what is being 
calculated. 

Our formulation of the nonlinear problem is the same as that of McComas (1977) 
or Meiss, Pomphrey & Watson (1979). We review the equations very briefly. A 
Lagrangian is introduced with the variable being the displacement field &(r, t )  : 

E is then expanded in terms of the normal modes 

where A+ ( t )  are the mode amplitudes for linear waves. The amplitude for waves with 
phase velocity along k is A+,  and the amplitude for waves with phase velocity in the 
negative k-direction is A - .  The amplitudes satisfy the equations 

,. 

For details on the coefficients 2 and the couplings B see DeWitt (1982), Olbers (1976) 
or Meiss et al. (1979). A term vo(k )  has been added to simulate dissipation due to 
interaction with the environment. fo (  k )  simulates forcing from the environment, and 
0, is the dispersion relation 

I n  the DIA approximation all of the Green functions and correlation functions are 
identical with those of the following linear system of equations : 

- (k ,  t )  + j [r++(k, t ,  t’) ~ - ( k ,  t’) +r++(k, t ,  t’) ~ + ( k ,  t’)] dt’ = j-p, t ) ,  

(1.4) 1 
m dA- 

dA+ 
- (k ,  t )  +s [ T - ( k ,  t ,  t’) A-(k ,  t’) + T + ( k ,  t ,  t’) A+(k,  t’)] dt’ = f t ( k ,  t ) .  

dt --to 

dt -m 

m 

r ( t ,  t’) is a function determined by the DIA equations. Causality demands r ( t , t ’ )  = 0 
for t > t .  We are treating a stationary problem, so depends only on t -t’. f ( k ,  t )  is 
a random forcing function on the kth mode due to all of the other modes and any 
external random forces. I n  the DIA approximation the f s  are Gaussian random 
variables with zero mean (provided that the external forces are also Gaussian with 
zero mean). Their correlation function is given by 

F o p ,  t - t’) as, + ‘ q 5 ’  (k ,  t -t’) = (f S(k, t ) f s ’ ( k ’ ,  t ’ ) ) .  (1.5) 

Fa is the correlation function for the external part of the forces and the matrix Z2 
is calculated from the DIA equations. 

The DIA equations involve self-consistent equations for two-point correlation and 
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response functions. Although three- and four-point functions can be calculated, they 
are not determined self-consistently, and we have not calculated them. Two-point 
functions with different wave vectors would not necessarily vanish in a nonlinear 
system, but we are assuming homogeneity, so they will vanish by assumption. 
However, the amplitudes for travelling waves parallel and antiparallel to a wave 
vector k have the same wave vector, so that homogeneity does not force the vanishing 
of their two-point function. This is the origin of the terms r,, and r--, which vanish 
for linear waves. 

It is convenient to work with the Fourier transform in the time domain, where r 
has the following representation : 

TSS’(k,w) = CY,,-,~[v,(k)+iSZ-s(k)]-Z~“’(k,~). (1.6) 

Here vo is the damping due to interaction with the external environment and 
SZ’ = +ak. If Cl were independent of w it  would represent three effects. The obvious 
ones are a finite lifetime and frequency shift. I n  addition, however, there is a coupling 
between the & mode. The dependence of C, on w represents a contribution to dA/dt 
from previous times; that  is, there is a memory effect. Similarly the w-dependence 
of C, says that the effective force on one mode due to other modes cannot be white 
noise, and that the force a t  one time is correlated with the force at a different time. 

Previous calculations have used weak-interaction theory, which is the limit of the 
DIA equation in which C, and C, are independent of w and infinitesimal. 

In  a previous paper (DeWitt & Wright 1982) we examined the dependence of Cl 
and C2 on w assuming that the RIA was valid. There we found that Cl and C, had 
some w-dependence in lowest-order perturbation theory. I n  this paper we will check 
the assumption of infinitesimal Cl and C,, ignoring, however, the w-dependence. The 
reason for this is that  the calculations were too difficult if w dependence of the Cs 
was allowed. We expect that there would probably be some changes in our answers 
if we were able to do a more complete calculation. 

In  32 we introduce the correlation function for the As, 

(1 .7 )  
1 
- 2Tc USS’(k,w) CY3(k+k) S ( W + W ’ )  = (AS,(w) AS,:(@’)), 

and the Green function for (1.3), 

GSS’(k,w) = [(vo+iSZis) CY,,-,, -iw-iiCS”(k,w)]-l. (1 .8)  

The inverse is a matrix inverse of a 2 x 2 matrix. 
To summarize, the DIA equations attempt an approximate calculation of the 

two-point functions, i.e. the response and correlation functions. All of the information 
is contained in two functions, C,(k, w )  and C,(k, w ) .  The direct-interaction approxi- 
mation for Cl and C2 is a set of equations that determine them self-consistently. These 
equations are presented in $2. There are a number of questions that naturally arise 
about the equations. How valid are they 1 How does one assess the validity of any 
answers 1 How does one solve them 1 Are the solutions unique Z Those are questions 
for which we have no clear answers. These equations are modelled after self-consistent 
equations for other systems that have been highly successful ; for example Hartree 
calculations in atomic physics and mean-field calculations for fields in magnetic 
materials. In  turbulence this approximation often gives good answers for low- 
to-moderate Reynolds numbers. Lacking simulations to compare with it is difficult 
to make an accurate assessment. I n  this regard see Frederirksen & Bell (1983). 

The problem of actually solving the equations is very difficult. I n  fact we have been 
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forced to  make additional approximations beyond DIA - principally that Zl and Z, 
are independent of w .  Although it is again difficult to justify this approximation, it 
has some virtues. One is that  i t  allows us to assess the validity of previous calculations 
that used weak-interaction theory (WIA). The reason for this is that if WIA were 
valid our results would then reproduce WIA exactly as Zl and Z, would be 
infinitesimal. This ability to check WIA is a very important feature of this paper. 

We find substantial differences from weak-interaction rates for many of the internal 
wave modes, since the functions Zl(k) and Z2(k) are quite different from those of weak 
interactions. One problem that immediately arises is that if Zl and Z2 are large the 
validity of truncating the Lagrangian in (1 .1 )  a t  third order is suspect. A Eulerian 
formulation would remove this problem. Carnevale & Frederickson (1983 a )  have 
discussed the 2-dimensional Eulerian DIA equations for internal waves and the 
relationship to WIA. They pointed out that WIA imposes a spurious conservation 
law. I n  this paper we use (1 .l) and ignore higher-order corrections without attempting 
to justify that approximation. 

The remainder of the paper is organized into four sections. I n  $ 2  we write down 
the DIA equations and our approximation to them. In $ 3  we discuss briefly the 
meaning of the parameters, and in $4 we give the results of our calculations. Section 
5 gives our conclusions. 

2. The self-consistent equations 
In  this section we write down the specific equations that will be used in the 

numerical solution of the problem. The derivation of the more general direct-inter- 
action approximation (DIA) equations is given in DeWitt & Wright (1982). The exact' 
DIA equations are 

n P 

J i5 
ZsS'(k, O )  = - C d3k, d3k2 dw, dw, S(k + k, - k,) S(W + w 2  - wl) B ~ ~ ~ ~ J ~ ~  

7c S l , &  

and 

d3k1 d3k2 dw, dw, S(k + k, + k,) S(w + w, + ol) B;i:;CS22 
S1. s; 
s2. s; 

x B ~ ~ ~ ~ ~ k z  UslSi(k1, w1)Us2sh(k2, w z ) ,  (2.2) 

where G is given by (1.8) and U by 

USS'(k, W )  = 2 GSSl(k, W )  ISs, p,,F,(k, W )  + C.,ls2 (k, w ) ]  GS"z( -k, - w ) .  (2.3) 
S I I S 2  

The goal of the calculation is to compute the matrices Zl and Z, in a self-consistent 
manner. All of the information about the decay and correlation of the waves is 
contained in these two quantities. 

As was pointed out in the previous paper, much has been said about possible ways 
to solve systems of equations that are related to the full D1A set of equations. 
However, the only numerical attempts a t  solution in this framework have used the 
RIA, which computes C;+ and Z;+ by letting 

Zl, Z,+O (2.4) 

in the expressions on the right-hand sides of (2.1) and (2.2). The only outcome that 
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would justify this approach would be one in which the computed values of C, were 
small compared with typical timescales. 

When there are many timescales present, it is not always clear what scales should 
be compared. I n  our approach we can compare the results from assuming El is 
infinitesimal with those from using its actual value. 

Our parametrization of the DIA equations assumes that G(k, w )  can be represented 
by two poles, one at w = 52, -iia, and a second a t  w = -Qr-iaI. Symmetry between 
f k  is assumed as well as between f Q. The equations are then parametrized by the 
pole positions. Also we require G,,,(k, t = 0+) = d,, -,,. Finally, there is the question 
of where to evaluate El(w).  (Carnevale and Fredericksen 1983b). Do we evaluate it 
a t  the pole for complex w or somewhere on the real axis Z We chose to evaluate El(@) 
a t  w = Q(k) ,  with Q given by the linear dispersion relation. See $3  for further 
comments. I n  particular we choose 

Zi(k, 0) = Ci(kj Q), Cz(k, w )  = C2(k, 0). (2 .5)  

The quantities El and Cz are in general 2 x 2 matrices with complex components, 
and so superficially appear to represent 16 real parameters. However, using the 
constant-w assumption and the general symmetry conditions 

I USS'(k, w )  = [ u-8. --Sf ( - k ,  - ~ ) l * ,  

GSS'(k, w )  = [G-S, --S' ( - k ,  -w)l* 
USS'(k,w) = USrS(-k ,  - w ) ,  

enables us to reduce these to 7 independent real quantities. We denote 

a(k)  E C;+(k, Q) = - [Zr-(k,Q)]*,  

c(k) C:+(k, Q) = - [C;-(k, a)]*, 
d(k) = C:+(k, Q) = (C,-(k, a))*, 
e(k) E C;+(k, 52) = (Zt - (k ,  a))*. 

The first symmetry condition implies that  e(k) is real; the other three quantities are 
in general complex. 

By invoking a further assumption we can reduce this set of parameters even 
further. We proceed as follows: with the above assumption we can write the Green 
function for this problem as 

+ - C  

i 
G(k,w)  = 

I n  writing matrices we will use the convention that s = + is represented by the first 
row (or column). I n  the expression for G 

7 = Q,-ia,, (T = -Qr-iaI, Q: = ( Q - U , ) ~ - ~ C ~ ~ .  (2.9) 

Here Q, is the renormalized 'frequency ' ; aR and a, represent the real and imaginary 
parts of a respectively. We note that in the weak-interaction limit Q,+Q, but that 
in this self-consistent calculation Q, may be either purely real or purely imaginary 
depending on the relative values of Q-a, and IcI. This will be explored more fully 
later. 

Notice that in this particular case the two poles of the Green function satisfy 

(r+a)*=-((r+a), (rcr)* = qa. (2.10) 

This result can be seen directly by comparing with (2.9), but more importantly i t  
can be obtained by applying the symmetry property of G in (2.6) without knowing 
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the analytical expressions for 7 and c. This is useful because the same structure 
appears when Green functions with more poles are considered. In  such cases it is 
not generally possible to obtain closed-form expressions for the poles. 

From the equation for G we can compute the correlation function 

U(W) = G(w) C2 GT( -u) ,  (2.11) 

where the superscript T denotes transpose of the matrix. If we denote 

U ( W )  = [ ( w - 7 ) ( w + r ) ( w - - ) ( w + ~ . ) 1 0 ( w )  (2.12) 

then 0(o) has no poles. 

function 
Now we are ready to impose ‘experimental’ constraints on our expressions. The 

U(k, t )  = dw eiot U(k,  o) (2.13) 

gives the two-time correlation of the internal-wave amplitudes and is given 
experimentally by the GarretkMunk spectra GM72 and GM75 (Garrett & Munk 1972, 
1975) and GM76 (Cairns & Williams 1976). We used GM76 in these calculations: 

USS’(t = 0) = U(k,,  k,) cYs, +, 

s 

\ 

k * ( ~ )  = 66(wZ--f2)3, 

E,  = 30 cm2/s2, 

N ,  = 5.2 x 10-3 s-l, 

b = 4.6 x s cm-l, 

I 2 f  1 B(w)  = -- 
n: w ((02 -f”)i (2.14) 

The great benefit of this approach is that  we now need only iterate one of the two 
DIA equations (the equation giving Zl). As a matter of fact if one reviews the steps 
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taken to derive the final expression for G and U it is not difficult to see that this 
is generally true whenever C, is chosen to be constant, regardless of the functional 
dependence of C, on w .  After the XI equation has been solved self-consistently the 
value of e may be computed from the C, equation to determine how close the ratio 
e/2aI is to the Garrett-Munk spectrum. If we use the equations in $ 2  and impose (2 .14)  
and (2 .16 ) ,  i t  is easy to  derive the following balance equation: 

(2 .17)  

If there is no forcing or dissipation on mode k due to non-internal-wave sources, 
the left-hand side is zero. I n  this case if the right-hand side is non-zero one would infer 
some inconsistency. One possibility is that the Garrett-Munk U ( k )  is not correct. A 
second possibility is that  there is either an effective F, present or an effective v,, i.e. 
mode k might be driven or damped by direct coupling to the external environment. 
And of course the theoretical framework and model may be invalid. If the right-hand 
side is positive then energy is being fed into mode k externally, and if i t  is negative 
then energy is being removed. 

3. Physical significance of the parameters 
Before we display our numerical results for the parameters Z, and C, we would 

first like to  discuss the meaning of the parameters introduced in $ 2 .  To do this we 
recall that the nonlinear evolution equation ( 2 . 4 )  may be equivalently written as a 
set of effective linear evolution equations, which for the constant-Xcase in this paper 
are 

A+(k, t )  + (v,+iQ*-ia) A+(k,  t)+ic*A-(k, t )  = f t ( k ,  t ) ,  
A-(k,  t )  + ( v, - iQ + ;a*) A-( k ,  t )  - i d + (  k ,  t)  = f ( k ,  t ) .  I (3 .1 )  

The functionsft and f give the effective driving of the waves due to all other modes. 
The parameter vo is a free parameter that  may be used to inject additional 
information about the decay of internal waves due to interaction with external 
systems. I n  all numerical work we always set vo = 0. 

The parameter a represents two physical quantities. The imaginary part of a 
represents an additional effective damping of the internal-wave mode due to losses 
to other internal-wave modes. The real part of a gives the frequency shift of the wave. 
The parameter c represents a coupling between + and - travelling waves. See also 
Holloway (1979).  

The pair of first-order equations for the amplitudes may be written as a pair of 
second-order equations involving only one type of amplitude each. If we ignore the 
f, then for either A+ or A- we have 

A ( k ,  t )  + 2(uO+a1) A(k ,  t )  + [@-aR)'+ ( U , + U ~ ) ~ -  lc12] A(k,  t )  = 0. 

A * - exp { - (v, + a I )  t + [lcI2 - (Q - aR)2 t 1 9 .  

(3 .2 )  

(3 .3 )  

The solution has a time dependence 

If lcI2 > (0 - aR), then we refer to  the mode as overdamped. In  the underdamped case 
the damping is given by 

In the overdamped case the damping is 

u = vo+aI.  (3 .4 )  

v = vo+al+lQr l .  (3 .5 )  
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as = a,+ISZ,I, aL = c ~ ~ - I 5 2 ~ l .  

I n  the overdamped region we define 

A spike disturbance in the equilibrium spectrum will contain both a short-lived and 
a long-lived component. We will see from the results of the numerical calculations 
that it is aL that  measures the lifetime of a disturbance for a large part of the 
internal-wave spectrum. 

As the idea of overdamping when applied to waves may seem peculiar we will give 
our interpretation of the meaning. Perhaps the simplest example is due to Kraichnan 
(1964). Suppose we have a linear wave field in a medium moving with velocity V .  
The frequency of a ( k ,  52)-wave will be 

Q V = 5 2 - k * V  (3.8) 
and time dependencies 

,in t - iSdte-ik.V v - e  

Imagine averaging over an ensemble of velocity V :  

(3.9) 

( eiQvt) = eiSdt e-$2t2 <Vz> .  (3.10) 

For large enough ( V 2 )  this will represent a strong damping, although not an 
overdamping. The relevance of this to internal waves is easily seen when we consider 
the effect of the large-scale waves on the small-scale waves. It has some of the elements 
of a random velocity field, but i t  also has the effect of changing the magnitudes of 
k and 52 as well. The small-scale wave may remain wavelike, but its wave vector 
changes under the influence of the background field. 

If the frequency is also changed in a random way then we have to average over 
52 as well. If 52 is a Gaussian random variable with zero mean, then the average 

<,iQt) e-&W > 

and we have complete overdamping. The calculations of Henyey & Pomphrey (1983) 
of small-scale wave packets in a large-scale field show a random behaviour in which 
the frequency of the wave packet undergoes rapid fluctuations. Our choice of fixed 
wave vectors k to  describe the wave is very awkward in the presence of strong 
advection and forcing. And of course both our approximation to the DIA and the 
DIA itself are suspect in this situation. 

4. Numerical results 
In  figure 1 we show a contour plot of log Ic/(52 - aR)I versus log m on the horizontal 

axis and log 52 on the vertical axis. Here m refers to the vertical wavenumber. The 
line of critical damping has the value zero; everything to the left of this line is in 
the underdamped regime, while everything to the right is in the overdamped regime. 
Certainly the overdamped region is not describable by weak-interaction theory. It 
is instructive to compare this plot with figure 2 ,  a plot of log (a,(WI)/Q) for the 
weak-interaction (WI) case using the same wave vector cutoffs for both. Recall that, 
for WIA to be valid, one requirement is that  the damping timescale must be long 
compared with the intrinsic frequency; that  is, a, 4 52. Notice that the self-consistent 
overdamped region covers the entire a,/Q > 1 region and overlaps the a,/Q < 1 
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FIGURE 2. Contour plot of log a,(WI)/SZ vs log m on the horizontal axis and log SZ on the vertical 
axis. The contour interval is 0.2. Dashed contours indicate lines with negative values. The 
horizontal axis is marked off in equivalent vertical wavelengths (in metres) and the vertical axis 
is marked off in units of the Coriolis frequency. 
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log m 

FIQURE 3. Contour plot of log (aL/asl vs logm on the horizontal axis and logB on 
the vertical axis. The contour interval is 0.4. 

region, so that the overdamping takes over just in the region where the old weak 
interaction calculation is known to be invalid. What is interesting is the extent to  
which the self-consistent (SC) calculaton reduces the rates in the large-m, large42 
region, Of course we do expect the SC calculation to reduce the damping rates in this 
region, for reasons described below, but the way that this reduction comes about is 
rather unexpected. Recall that  the rate of decay of a spike disturbance introduced 
into the steady-state ocean is given by aL and as in the SC calculation (see (36)). If 
we plot log IaL/asl in figure 3 we see that in essentially the entire overdamped region 
aL << as, which implies that  a,(SC) z JsZ,I. This means that the decay rates are much 
smaller than one would expect by examining the scale of aI. Unfortunately the same 
device that causes the damping rates to be so greatly diminished also makes it more 
difficult to obtain accurate numbers in the large-m region. A small change in the 
parameters (a , c )  in this region can cause a disproportionately large change in aL 
(though not in as). Since i t  is (a,  c) that  are computed in each iteration, factors such 
as the integration accuracy make i t  difficult to  control such changes after a certain 
limit is reached. We have solved the equations by an iterative scheme. After many 
iterations the results do not change much, but the cancellations and inaccuracies in 
the integration scheme lead to some changes from iteration to iteration. I n  the next 
two figures we compare the 01, from two successive iterations. Figure 4 is a plot of the 
percent deviation of the input values of a, compared to the output values of aI .  

aI(in) - aI( out) 
A(a1) = 100 a: in 

I(  1 +%(out) . 

I n  a perfect calculation, of course, these numbers would be identical. We see in fact 
that  in most of the region of interest we have convergence to  whtin a few percent, 
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log m 

FIQURE 4. Contour plot of d(a,) ,  the percentage deviation of the input value of a, compared 
the output value, vs logm on the horizontal axis and log s2 on the vertical axis. 

with 

and i t  is only for very large values of m that  we reach values of 8-10 7;. However, 
if we compare this with figure 5, which is a plot of 

aL(in) -a,(out) 
aL(in) + a,(out) ' 

log A@,)  = log 100 

we see that the error increases in uL more quickly than i t  does in aI .  The contours 
labelled 1.5 and 2.0 correspond to a 30 Yo and a 100 yo error respectively. I n  the large-m 
region this means that we only know aL within a factor of 2 or so. We hasten to point 
out that  this does not alter our conclusions about the dramatic effects of the SC 
calculation. First of all the fact that the values of (a ,  c )  for a given mode do not depend 
on the behaviour of modes with even moderately greater values of (m, S Z )  means that 
the computed values in most of the space are not affected by the uncertainty in the 
large-m extreme. Second, we will see shortly that compared to the WIA the rates for 
the SC case in the large-m region are reduced by orders of magnitude, and so even 
a factor of 2 uncertainty does not eliminate the qualitatively new behaviour. 

Referring back to  (3.7), we see that aL <i as implies that, for example, 

A-(k,  t )  - e-+, (4.3) 

so that we may ignore us and consider only aL in determining the long-time behaviour 
of C. For this reason we plot log (aL/SZ) in figure 6 with the understanding that aL = aI 
in the underdamped regime. It is clear that these rates are very much different from 
those calculated using the WIA. The rates for most of the spectrum now satisfy 
uL/O 4 (27c)-l, but there still exists a substantial region for which aL/O > 1 ,  mostly 
in modes with high frequencies. We explicitly compare the WIA decay rates with SC 
rates in figure 7 ,  where we plot log(aL/aI(WI)). For small m and small SZ both 
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log m 

FIGURE 5. Contour lot of logd(a,), the logarithm of the percentage deviation of the input value 
of aL compared with the output value, v s  logm on the horizontal axis and logm on the vertical 
axis. The contour interval is 0.5. 

FIGURE 
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52 on the 

calculations give roughly the same results. For moderate-to-large m we see sub- 
stantially reduced rates for G. Notice though that in the small-m, large42 region the 
SC calculation actually increases rates by a great deal. 

The change in rates for moderate-to-large-m region is easy to understand if one 
remembers that McComas (1977) and McComas & Bretherton (1977) identified the 
induced diffusion mechanism to be the dominant energy-transfer mechanism for the 
WIA in this region. This means that energy diffuses from a given large-wave-vector 
mode to a nearby mode in wave-vector space by interacting with a third, small- 
wave-vector mode. Since in the WIA all waves are assumed to have infinite lifetimes, 
the rate of energy exchange is only governed by the coupling between the modes. 
However, in the SC calculation the finite lifetime of each mode is built into the 
calculation. This, and the fact that the decay rates depend on the amplitudes of the 
interacting modes, implies that  the rate a t  which energy is transferred between modes 
decreases as the waves decay. Therefore we would expect the lifetimes of the modes 
in this region to  be increased. 

We would now like to consider another measure of the consistency of the 
calculation. Recall that we have found a correspondence between e and a given by 
(2.16). Given the parameters (a, c )  we can now compute the ratio e/2aIU(0). In  truth 
the degree to which e/2aIU(0) = 1 depends both on how well GM76 represents an 
equilibrium spectrum and on the reliability of the calculation. It is not possible under 
the current assumptions to differentiate between these two effects, so i t  is best to talk 
about the degree of equilibrium of GM76 under a given approximation. (See also the 
discussion a t  the end of $2.) For example, figure 8 shows a plot of e/2aIU(0) for the 
WIA. We see that for large frequencies the spectrum appears to be in a high degree 
of equilibrium, while the lower frequencies are out 12 equilibrium by 50 yo or more. 
I n  the region where e/2u,U(O) is less than 1, energy is being fed in. This occurs for 
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FIGURE 8. Contour plot of e/2aI(WI)U(0) vs logm on the horizontal axis and log Q on the 
vertical axis. The contour interval is 0.4. 
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FIGURE 9. Contour plot of log (e /2a1U(O))  vs logm on the horizontal axis and logQ on the vertical 
axis. The contour interval is 0.4. The dashed lines indicate negative values corresponding to energy 
flowing in. 
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FIGURE 10. Contour plot of log I(d/dQ) z;+(Q) Q/Zc;+(Q)l vs logm on the horizontal axis and 
on the vertical axis, for the self-consistent calculation. The contour interval is 0.4. 
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frequencies near f and for large vertical wavelengths. Dissipation occurs for short 
vertical wavelengths. We compare this with figure 9, which shows log (e/2aIU(0)) for 
the SC calculation. We note that the previous discussion concerning the accuracy of 
aL is relevant here, since a factor of 2 in the high-m region can greatly affect the 
equilibrium balance. The equilibrium nature of GM76 may be difficult to determine 
for large-m in this SC calculation. However, in general we obtain a similar kind of 
deviation of e/2a,U(O) from 1 ,  the order of 50 yo or so. There are some important 
differences between figures 8 and 9. The dissipation rates are higher for larger vertical 
wavenumber (necessitating the logarithmic contours), and perhaps most important 
there are indications of some energy dissipation for high-frequency long-vertical- 
wavelength waves. 

Next, we have done another test calculation to determine how much the SC 
calculation might affect the off-resonant character of C, and C,. We have calculated 
the derivative of.Z;+ a t  w = a. In  figure 10 we plot 

a measure of the rate of deviation of Z;+ from its value a t  w = 9. If  this quantity 
is much greater than 1 then the constant-Z’, assumption breaks down. If we compare 
this with the same quantity calculated for the weak-interaction case, shown in figure 
11,  we see that the region where the relative deviation exceede 1 is greatly diminished 
in the SC case. It should be noted in passing that the very restrictive nature of the 
weak-interaction calculation (only allowing modes to interact if they satisfy the strict 
frequency-resonance conditions) allows a new class of interaction to suddenly ‘ turn 
on’ a t  w = Zf, and this accounts for the large derivatives around that frequency. 
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log m 
FIGURE 11. Contour plot of log I(d/dQ) z;+ (Q) Q/Z;+(Q)l vsllog m on the horizontal axis and log Q 

on the vertical axis, for the weak-interaction case. The contour interval is 0.4. 

5. Conclusions 
I n  this paper we have described a two-pronged advance in the study of the time 

behaviour of oceanic internal waves. First, we have applied a formalism which allows 
for a systematic study of internal-wave interactions. Second we have performed the 
first self-consistent calculation of oceanic internal-wave parameters. We will first 
discuss the importance of the formalism. 

Olbers (1974,1976), McComas (1977) and McComas & Bretherton (1977) found high 
decay rates for internal waves which suggested that the WIA formalism was not 
appropriate. There have been numerous discussions as to the validity - see McComas 
& Muller (1981) and Holloway (1980, 1982). Our approach (DeWitt & Wright 1982) 
provides for a systematic approximation scheme. 

The numerical results of this paper indicate the degree to which the earlier 
numerical calculations were unreliable. I n  fact we conclude that while that  earlier 
decay rates were basically correct for the small-wave-vector-small-frequency regime, 
the decay rates for most of the spectrum were much too large. Our calculation 
indicates that, except for high frequencies, internal waves have a long-lived component 
that tends to decay relatively slowly. We point out that  the fact that  some region 
of the spectrum is still predicted to decay quickly provides some support for our 
procedure. Had all decay rates turned out to be small, we would have been forced 
into the impossible conclusion that the weak interaction approximation was correct 
after all. Any future improvements an our calculation cannot change this fact. 
Further, this argument tends to  imply that any future calculation cannot substantially 
reduce rates in the high-frequency regime, since our numbers there are not much 
greater than the point where weak-interaction theory becomes valid. This leads us 
to believe that our rates are fairly representative of reality, or a t  least represent a 
rough lower limit to it. 
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We close by considering how our SC calculation might be improved upon. The most 
logical next step is to study the effect of non-constant .El and C2 on the results. This 
might be done by choosing functional forms for Cl(w)  that allow for more than two 
poles in the Green function. A continued fraction representation of C, has been tried 
in other contexts and would probably work well here. The problem with going to a 
larger number of poles is that it is no longer possible to  find analytical expressions 
for the poles and so some insight might be lost. Further difficulties arise because a 
continued-fraction representation allows for new poles to  appear in G in successive 
iterations. Since it is not usually possible to  keep all of these poles for computational 
reasons, one must determine a reasonable way to  discard some of these poles. 
Nevertheless choosing some consistent scheme, like keeping the slowest-decaying 
terms, would make such a calculation an attractive candidate for the next level of 
calculations. 

This research supported in part by ONR under Contract N00014-80-C-0840. The 
research was performed while both authors were a t  the University of Illinois, Urbana. 
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